Abstract

Estimating connectivity is key for maintaining population viability for pond-breeding amphibians, especially in areas where habitat alterations occur. Here, we used genetic data (microsatellites) to estimate connectivity of marbled salamanders, Ambystoma opacum, among three focal ponds and compared it to field data (capture-mark-recapture estimates) of movement among the same ponds. In addition, we derived least-cost dispersal paths from genetic data and compared them to field connectivity estimates. We found that genetic and field estimates of dispersal were generally congruent, but field-based paths were more complex than genetic-based paths. While both methods complement each other in identifying important source-sink metapopulation dynamics to inform efficient conservation management plans, field data provide a more biologically accurate understanding of the spatial movement of individual marbled salamanders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.