Abstract

Most of the world’s saline soils are found in arid or semiarid areas, where salinization is becoming serious. Ground laboratory hyperspectral data (analytical spectral devices, ASD) as well as spaceborne hyperspectral data, including Gaofen-5 (GF-5) and Huanjing-1A (HJ-1A), provide convenient salinity monitoring. However, the difference among ASD, GF-5, and HJ-1A spectra in salinity monitoring remains unclear. So, we used ASD, GF-5, and HJ-1A spectra as data sources in Gaotai County of Hexi Corridor, which has been affected by salinization. For a more comprehensive comparison of the three spectra datum, four kinds of band screening methods, including Pearson correlation coefficient (PCC), principal component analysis (PCA), successive projections algorithm (SPA), and random forest (RF) were used to reduce the dimension of hyperspectral data. Particle swarm optimization (PSO) was used to improve the random initialization of weights and thresholds of the back propagation neural network (BPNN) model. The results showed that root mean square error (RMSE) and determination of the coefficients (R2) of models based on ASD and HJ-1A spectra were basically similar. ASD spectra (RMSE = 4 mS·cm−1, R2 = 0.82) and HJ-1A (RMSE = 2.98 mS·cm−1, R2 = 0.93) performed better than GF-5 spectra (RMSE = 6.45 mS·cm−1, R2 = 0.67) in some cases. The good modelling result of HJ-1A and GF-5 data confirmed that spaceborne hyperspectral imagery has great potential in salinity mapping. Then, we used HJ-1A and GF-5 hyperspectral imagery to map soil salinity. The results of GF-5 and HJ-1A showed that extremely and highly saline soil mainly occurred in grassland and the southern part of arable land in Gaotai County. Other lands mainly featured non-saline and slightly saline soil. This can provide a reference for salinity monitoring research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call