Abstract

This paper explores geometry optimization of an offshore wind turbine’s mooring system considering the minimization of the material cost and the cumulative fatigue damage. A comparison of time domain simulations against frequency domain simulations is made to explore the suitability of these methods to the design process. The efficient design options, the Pareto front, from the frequency domain study are also re-evaluated using time domain simulations and compared against the time domain Pareto front. Both the time and frequency domain results show optimal results utilizing similar design philosophies, however, the frequency domain methods severely under predict the fatigue loads in the mooring system and incorrectly class infeasible solutions as feasible. The frequency domain is therefore not suitable for optimization use without some external means of applying engineering constraints. Furthermore, re-evaluation of the frequency domain solutions provides guidance to the uncertainty and the necessary design fatigue factors required if implementing frequency domain methods in design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call