Abstract
The combination of Machine Learning (ML), smart energy meters, and availability of household appliance energy profile data has opened new opportunities for Non-Intrusive Load Monitoring (NILM). However, the number of options makes it challenging in selecting optimal combinations for different energy applications, which requires studies to examine their trade-offs.This paper contributes one such study that investigated four established ML approaches – K Nearest Neighbour (KNN), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost) and Convolutional Neural Network (CNN) – and their performance in classifying appliance events from Alternating Current (AC) and Root Mean Square (RMS) energy data where the sampling frequency and training dataset set size was varied (10 Hz–1 kHz and 50–2000 examples per class, respectively). The computational expense during training, testing and storage was also assessed and evaluated with reference to real-world applications.The CNN classifier trained on AC data at 500 Hz and 11,000 examples gave the best F1-score 0.989 followed by the KNN classifier 0.940. The storage size required by the CNN models was 3̃MB, which is very close to fitting on cost-effective embedded system microcontrollers. This would prevent high-rate data needing to be sent to the cloud as analysis could be performed on edge computing Internet-of-Things (IoT) devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.