Abstract

AbstractSoil Compaction results from compressive forces applied to compressible soil by machinery wheels, combined with tillage operations. Draft animal‐pulled equipment may also cause soil compaction, but a huge gap exists on experimental data to adequately assess their impacts and, actually, animal traction is an option seen with increasing potential to contribute to sustainable agriculture, especially in mountain areas. This study was conducted to assess the impacts on soil compaction of tillage operations with motor tractor and draft animals. In a farm plot (Vale de Frades, NE Portugal) treatments were applied in sub‐plots (30 m × 3 m), consisting in a two way tillage with tractor (T), a pair of cows (C) and a pair of donkeys (D). Undisturbed soil samples (120) were taken before and after operations for bulk density (BD) and saturated hydraulic conductivity (Ks). The relative changes in BD observed after tillage in the 0-0.05 m soil depth increased after operations in all treatments. The increase was higher in the tractor sub-plot (15%) than in those where animal traction was used (8%). Before operation Ks class was rapid and fast in all samples, and after operation this value was reduced to 33% in T, whereas it reached 83% in C. Electrical Resistivity Tomography (ERT) was useful as a tool to identify the alterations caused by tillage operations on soil physical status. These preliminary results confirm the potential of animal traction as an option for mountain agri‐environments, yet it requires much wider research to soundly ground its assets.

Highlights

  • Soil structure degradation, often called soil compaction, is regarded as one of the most serious form of land degradation caused by conventional farming practices which negatively disturbs the soil physical status

  • The results of the physical soil properties which were assessed before and after tillage operations are shown in Table 1 and Table 2

  • Soil water content (SWC) showed a statistically significant decrease of the global plot average, at 0-0.05 m depth, from 9.4% to 5.8%, when comparing the sample collection timing, affected by the high temperature prevailing along the day

Read more

Summary

Introduction

Often called soil compaction, is regarded as one of the most serious form of land degradation caused by conventional farming practices which negatively disturbs the soil physical status. According to the European Environmental Agency (2012) compaction is one of the key threats affecting soils. It occurs even in no-tillage systems because of the compressive forces applied to soil by tractor wheels (Batey 2009). Compaction alters soil structure by crushing aggregates or combining them into larger units, increase soil bulk density, and decrease the number of coarse pores (Needham et al 2004; Delgado et al 2007). Unlike erosion and salinity that give strong surface evidence of their presence, soil

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.