Abstract
We analyze numerically the training dynamics of deep neural networks (DNN) by using methods developed in statistical physics of glassy systems. The two main issues we address are (1) the complexity of the loss landscape and of the dynamics within it, and (2) to what extent DNNs share similarities with glassy systems. Our findings, obtained for different architectures and datasets, suggest that during the training process the dynamics slows down because of an increasingly large number of flat directions. At large times, when the loss is approaching zero, the system diffuses at the bottom of the landscape. Despite some similarities with the dynamics of mean-field glassy systems, in particular, the absence of barrier crossing, we find distinctive dynamical behaviors in the two cases, showing that the statistical properties of the corresponding loss and energy landscapes are different. In contrast, when the network is under-parametrized we observe a typical glassy behavior, thus suggesting the existence of different phases depending on whether the network is under-parametrized or over-parametrized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.