Abstract
Connectivity modeling in functional neuroimaging has become widely used method of analysis for understanding functional architecture. One method for deriving directed connectivity models is Group Iterative Multiple Model Estimation (GIMME; Gates and Molenaar, 2012). GIMME looks for commonalities across the sample to detect signal from noise and arrive at edges that exist across the majority in the group (“group-level edges”) and individual-level edges. In this way, GIMME obtains generalizable results via the group-level edges while also allowing for between subject heterogeneity in connectivity, moving the field closer to obtaining reliable personalized connectivity maps. In this article, we present a novel extension of GIMME, confirmatory subgrouping GIMME, which estimates subgroup-level edges for a priori known groups (e.g. typically developing controls vs. clinical group). Detecting edges that consistently exist for individuals within predefined subgroups aids in interpretation of the heterogeneity in connectivity maps and allows for subgroup-specific inferences. We describe this algorithm, as well as several methods to examine the results. We present an empirical example that finds similarities and differences in resting state functional connectivity among four groups of children: typically developing controls (TDC), children with autism spectrum disorder (ASD), children with Inattentive (ADHD-I) and Combined (ADHD-C) Type ADHD. Findings from this study suggest common involvement of the left Broca's area in all the clinical groups, as well as several unique patterns of functional connectivity specific to a given disorder. Overall, the current approach and proof of principle findings highlight a novel and reliable tool for capturing heterogeneity in complex mental health disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.