Abstract

In conjoint choice experiments, the semi-Bayesian D-optimality criterion is often used to compute efficient designs. The traditional way to compute this criterion which involves multi-dimensional integrals over the prior distribution is to use Pseudo-Monte Carlo samples. However, other sampling approaches are available. Examples are the Quasi-Monte Carlo approach (randomized Halton sequences, modified Latin hypercube sampling and extensible shifted lattice points with Baker's transformation), the Gaussian-Hermite quadrature approach and a method using spherical-radial transformations. Not much is known in general about which sampling scheme performs best in constructing efficient choice designs. In this study, we compare the performance of these approaches under various scenarios. We try to identify the most efficient sampling scheme for each situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.