Abstract
Abstract. This paper presents different approaches to map bark beetle infested forests in Croatia. Bark beetle infestation presents threat to forest ecosystems. Due to large unapproachable area, it also presents difficulties in mapping infested areas. This paper analyses available machine learning options in open-source software QGIS and SAGA GIS. All options are performed on Copernicus data, Sentinel 2 satellite imagery. Machine learning and classification options are maximum likelihood classifier, minimum distance, artificial neural network, decision tree, K Nearest Neighbor, random forest, support vector machine, spectral angle mapper and Normal Bayes. Kappa values respectively are: 0.71; 0.72; 0.81; 0.68; 0.69; 0.75; 0.26; 0.60; 0.41 which shows highest classification accuracy for artificial neural networks method and lowest for support vector machine accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.