Abstract

BackgroundPolyploidy is very common in plants and can be seen as one of the key drivers in the domestication of crops and the establishment of important agronomic traits. It can be the main source of genomic repatterning and introduces gene duplications, affecting gene expression and alternative splicing. Since fully sequenced genomes are not yet available for many plant species including crops, de novo transcriptome assembly is the basis to understand molecular and functional mechanisms. However, in complex polyploid plants, de novo transcriptome assembly is challenging, leading to increased rates of fused or redundant transcripts. Since assemblers were developed mainly for diploid organisms, they may not well suited for polyploids. Also, comparative evaluations of these tools on higher polyploid plants are extremely rare. Thus, our aim was to fill this gap and to provide a basic guideline for choosing the optimal de novo assembly strategy focusing on autotetraploids, as the scientific interest in this type of polyploidy is steadily increasing.ResultsWe present a comparison of two common (SOAPdenovo-Trans, Trinity) and one recently published transcriptome assembler (TransLiG) on diploid and autotetraploid species of the genera Acer and Vaccinium using Arabidopsis thaliana as a reference. The number of assembled transcripts was up to 11 and 14 times higher with an increased number of short transcripts for Acer and Vaccinium, respectively, compared to A. thaliana. In diploid samples, Trinity and TransLiG performed similarly good while in autotetraploids, TransLiG assembled most complete transcriptomes with an average of 1916 assembled BUSCOs vs. 1705 BUSCOs for Trinity. Of all three assemblers, SOAPdenovo-Trans performed worst (1133 complete BUSCOs).ConclusionAll three assembly tools produced complete assemblies when dealing with the model organism A. thaliana, independently of its ploidy level, but their performances differed extremely when it comes to non-model autotetraploids, where specifically TransLiG and Trinity produced a high number of redundant transcripts. The recently published assembler TransLiG has not been tested yet on any plant organism but showed highest completeness and full-length transcriptomes, especially in autotetraploids. Including such species during the development and testing of new assembly tools is highly appreciated and recommended as many important crops are polyploid.

Highlights

  • Polyploidy is very common in plants and can be seen as one of the key drivers in the domestication of crops and the establishment of important agronomic traits

  • It has been discovered that all flowering plants experienced at least two ancient polyploidization events [1] that led to new genes with novel functions [2]

  • Whilst the first is the outcome of WGD within a species where a genome with multiple sets of homologous chromosomes is generated (e.g. AAAA in the case of an autotetraploid), allopolyploids originate through WGD that is based on the hybridization between species resulting in a genome with multiple sets of homoeologous chromosomes [8]

Read more

Summary

Introduction

Polyploidy is very common in plants and can be seen as one of the key drivers in the domestication of crops and the establishment of important agronomic traits. It can be the main source of genomic repatterning and introduces gene duplications, affecting gene expression and alternative splicing. Since fully sequenced genomes are not yet available for many plant species including crops, de novo transcriptome assembly is the basis to understand molecular and functional mechanisms. Polyploidy (often referred to as whole genome duplication, WGD) describes the presence of more than two sets of homologous chromosomes in a cell or an organism, is very common in higher plants and plays an important role in plant evolution, speciation and adaptation. Whilst the first is the outcome of WGD within a species where a genome with multiple sets of homologous chromosomes is generated (e.g. AAAA in the case of an autotetraploid), allopolyploids originate through WGD that is based on the hybridization between species resulting in a genome with multiple sets of homoeologous chromosomes (each from a separate parental subgenome, e.g. AABB in allotetraploids) [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.