Abstract

Several magnetic resonance (MR) techniques have been suggested for radiation-free imaging of osseous structures. To compare the diagnostic value of ultra-short echo time and gradient echo T1-weighted MRI for the assessment of vertebral pathologies using histology and computed tomography (CT) as the reference standard. Prospective. Fifty-nine lumbar vertebral bodies harvested from 20 human cadavers (donor age 73 ± 13 years; 9 male). Ultra-short echo time sequence optimized for both bone (UTEb) and cartilage (UTEc) imaging and 3D T1-weighted gradient-echo sequence (T1GRE) at 3 T; susceptibility-weighted imaging (SWI) gradient echo sequence at 1.5 T. CT was performed on a dual-layer dual-energy CT scanner using a routine clinical protocol. Histopathology and conventional CT were acquired as standard of reference. Semi-quantitative and quantitative morphological features of degenerative changes of the spines were evaluated by four radiologists independently on CT and MR images independently and blinded to all other information. Features assessed were osteophytes, endplate sclerosis, visualization of cartilaginous endplate, facet joint degeneration, presence of Schmorl's nodes, and vertebral dimensions. Vertebral disorders were assessed by a pathologist on histology. Agreement between T1GRE, SWI, UTEc, and UTEb sequences and CT imaging and histology as standard of reference were assessed using Fleiss' κ and intra-class correlation coefficients, respectively. For the morphological assessment of osteophytes and endplate sclerosis, the overall agreement between SWI, T1GRE, UTEb, and UTEc with the reference standard (histology combined with CT) was moderate to almost perfect for all readers (osteophytes: SWI, κ range: 0.68-0.76; T1GRE: 0.92-1.00; UTEb: 0.92-1.00; UTEc: 0.77-0.85; sclerosis: SWI, κ range: 0.60-0.70; T1GRE: 0.77-0.82; UTEb: 0.81-0.92; UTEc: 0.61-0.71). For the visualization of the cartilaginous endplate, UTEc showed the overall best agreement with the reference standard (histology) for all readers (κ range: 0.85-0.93). Morphological assessment of vertebral pathologies was feasible and accurate using the MR-based bone imaging sequences compared to CT and histopathology. T1GRE showed the overall best performance for osseous changes and UTEc for the visualization of the cartilaginous endplate. 1 TECHNICAL EFFICACY: Stage 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call