Abstract

Finding computationally valuable representations of models of predicate logic formulas is an important issue in the field of automated theorem proving, e.g. for automated model building or semantic resolution. In this article we treat the problem of representing single models independently of building them and discuss the power of different mechanisms for this purpose. We start with investigating context-free languages for representing single Herbrand models. We show their computational feasibility and prove their expressive power to be exactly the finite models. We show an equivalence with “ground atoms and ground equations” concluding equal expressive power. Finally we indicate how various other well known techniques could be used for representing essentially infinite models (i.e. models of not finitely controllable formulas), thus motivating our interest in relating model properties with syntactical properties of corresponding Herbrand models and in investigating connections between formal language theory, term schematizations and automated model building.KeywordsGround TermGround AtomFinite ModelAtom RepresentationNonterminal SymbolThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.