Abstract

AbstractThis paper evaluates complete versus partial classification for the problem of identifying latently dissatisfied customers. Briefly, latently dissatisfied customers are defined as customers reporting overall satisfaction but who possess typical characteristics of dissatisfied customers. Unfortunately, identifying latenty dissatisfied customers, based on patterns of dissatisfaction, is difficult since in customer satisfaction surveys, typically only a small minority of customers reports to be overall dissatisfied and this is exactly the group we want to focus learning on. Therefore, it has been claimed that since traditional (complete) classification techniques have difficulties dealing with highly skewed class distributions, the adoption of partial classification techniques could be more appropriate. We evaluate three different complete and partial classification techniques and compare their performance on a ROC convex hull graph. Results on real world data show that, under the circumstances described abobe, partial classification is indeed a serious competitor for complete classification. Moreover, external validation on holdout data shows that partial classification is able to identify latently dissatisfied customers correctly.KeywordsAssociation RuleFrequent ItemsetsTarget ClassComplete ClassificationMisclassification CostThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.