Abstract
Deep learning techniques such as Convolutional Neural Networks (CNNs) have shown good results in activity recognition. One of the advantages of using these methods resides in their ability to generate features automatically. This ability greatly simplifies the task of feature extraction that usually requires domain specific knowledge, especially when using big data where data driven approaches can lead to anti-patterns. Despite the advantage of this approach, very little work has been undertaken on analyzing the quality of extracted features, and more specifically on how model architecture and parameters affect the ability of those features to separate activity classes in the final feature space. This work focuses on identifying the optimal parameters for recognition of simple activities applying this approach on both signals from inertial and audio sensors. The paper provides the following contributions: (i) a comparison of automatically extracted CNN features with gold standard Human Crafted Features (HCF) is given, (ii) a comprehensive analysis on how architecture and model parameters affect separation of target classes in the feature space. Results are evaluated using publicly available datasets. In particular, we achieved a 93.38% F-Score on the UCI-HAR dataset, using 1D CNNs with 3 convolutional layers and 32 kernel size, and a 90.5% F-Score on the DCASE 2017 development dataset, simplified for three classes (indoor, outdoor and vehicle), using 2D CNNs with 2 convolutional layers and a 2x2 kernel size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.