Abstract

Background: Health effects induced by climate, weather and climatic change may act directly or indirectly on human physiology. The future total burden of global warming is uncertain, but in some areas and for specific outcomes, mortality and morbidity are likely to increase. One likely effect of global warming is an increasing number of extreme weather events, such as floods, storms and heat waves. The excess numbers of specific health outcomes attributable to climate-induced events can be estimated. This paper compares approaches for estimating excess numbers of outcomes associated with climate extremes, exemplified by a case study of hospital admissions during the extremely warm summer of 2006 in southern Sweden.Materials and methods: Daily hospital admission data were obtained from the Swedish National Board of Health and Welfare for six hospitals in the Skåne region of southern Sweden for the period 1998 to 2006. Daily temperature data for the region were obtained from the meteorological station in the city of Malmö. We used four established approaches for estimating the daily excess numbers associated with extreme heat. Time series of daily event rates were assumed to follow a Poisson distribution. Excess event rates were compared by using several approaches, such as standardised event ratios and generalised additive models to estimate the health risks attributable to the extreme climate event.Results: The four approaches yielded vastly different results. The estimates of excess were considerably biased when not accounting for time trends in previous years’ data. Three of four approaches showed a significant increase in excess hospitalisation rates attributable to the heat episode in Skåne in 2006. However, modelling the effect of temperature failed to describe the risks induced by the extreme heat.Conclusion: Estimates of excess events depend greatly on the approach used. Further research is needed to identify which method yielded the most accurate estimates. However, one of the approaches used generally performed better than the others in estimating the excess rates associated with the heat episode. Further on, estimating relative risks of temperature or other determinants of disease may fail to incorporate the unique characteristics of particular weather events, such as the effect caused by very persistent heat exposure. Unless this can be incorporated into predictive models, such models may be less appropriate to use when predicting the future burden of heat waves on human health.

Highlights

  • Health effects induced by climate, weather and climatic change may act directly or indirectly on human physiology

  • Further on, estimating relative risks of temperature or other determinants of disease may fail to incorporate the unique characteristics of particular weather events, such as the effect caused by very persistent heat exposure

  • One of the approaches used here seems to have performed better than the others in estimating the excess rates associated with this heat episode

Read more

Summary

Introduction

Health effects induced by climate, weather and climatic change may act directly or indirectly on human physiology. The excess numbers of specific health outcomes attributable to climate-induced events can be estimated. Excess event rates were compared by using several approaches, such as standardised event ratios and generalised additive models to estimate the health risks attributable to the extreme climate event. Further on, estimating relative risks of temperature or other determinants of disease may fail to incorporate the unique characteristics of particular weather events, such as the effect caused by very persistent heat exposure. Unless this can be incorporated into predictive models, such models may be less appropriate to use when predicting the future burden of heat waves on human health

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call