Abstract

We propose a new approach for assigning weights to models using a divergence-based method (D-probabilities), relying on evaluating parametric models relative to a nonparametric Bayesian reference using Kullback–Leibler divergence. D-probabilities are useful in goodness-of-fit assessments, in comparing imperfect models, and in providing model weights to be used in model aggregation. D-probabilities avoid some of the disadvantages of Bayesian model probabilities, such as large sensitivity to prior choice, and tend to place higher weight on a greater diversity of models. In an application to linear model selection against a Gaussian process reference, we provide simple analytic forms for routine implementation and show that D-probabilities automatically penalize model complexity. Some asymptotic properties are described, and we provide interesting probabilistic interpretations of the proposed model weights. The framework is illustrated through simulation examples and an ozone data application. Supplementary materials for this aricle are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.