Abstract
Despite substantial advances in the use of proteomic technologies, their widespread application in fruit tissues of non-model and recalcitrant species remains limited. This hampers the understanding of critical molecular events during the postharvest period of fleshy tropical fruits. Therefore, we evaluated label-free quantitation (LFQ) and TMT-SPS-MS3 (TMT) approaches to analyse changes in the protein profile of mango peels during postharvest period. We compared two extraction methods (phenol and chloroform/methanol) and two peptide fractionation schemes (SCX and HPRP). We accurately identified 3065 proteins, of which, 1492 were differentially accumulated over at 6 days after harvesting (DAH). Both LFQ and TMT approaches share 210 differential proteins including cell wall proteins associated with fruit softening, as well as aroma and flavour-related proteins, which were increased during postharvest period. The phenolic protein extraction and the high-pH reverse-phase peptide fractionation was the most effective pipeline for relative quantification. Nevertheless, the information provided by the other tested strategies was significantly complementary. Besides, LFQ spectra allowed us to track down intact N-glycopeptides corroborating N-glycosylations on the surface of a desiccation-related protein. This work represents the largest proteomic comparison of mango peels during postharvest period made so far, shedding light on the molecular foundation of edible fruit during ripening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.