Abstract

Modelling the dynamics of nonlinear systems poses a much more challenging problem than for their linear counterparts; as such, analytical solutions are rarely achievable and numerical or analytical approximations are often necessary to understand the system’s behaviour. While numerical techniques are undoubtedly accurate, it is possible to gain a greater understanding of the processes underpinning the workings of the dynamics. Therefore, it is valuable to investigate the accuracy and practicality of the aforementioned analytical approximation techniques and compare the results with numerical which are known to be accurate. In this paper, the unforced, undamped dynamics (known as backbone curves) of a non-symmetric two-mass oscillator will be calculated using the second-order normals forms (SONF), harmonic balance, and multiple scales techniques. The results of these will then be compared to responses found using numerical continuation. Furthermore, the forced responses will be approximated using the SONF and harmonic balance techniques. In addition, recent work has reported the possibility of using such analytical expressions for parameter estimation from experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.