Abstract
The important task of replugging bad or missing cells with healthy seedlings in greenhouses is carried out by automatic transplanters. Grippers of such transplanters spend a considerable amount of time shuttling between the source and target trays during replugging. Therefore, work efficiency of transplanters can be significantly improved by tour planning. In this study, performances of the ant colony algorithm (ACA), the genetic algorithm (GA), and the common sequence method (CSM) in replugging tour planning were compared. Two types of seedling trays, with 50 and 200 cells, were used. The ACA and the GA were found to have more advantages than the CSM in total tour lengths for one tray. Moreover, the ACA performed better than the GA when the numbers of empty cells and healthy seedlings in the target and source trays, respectively, increased. When a 20×10 tray was used, the average length of the ACA decreased by 6000.9mm compared with that of the GA and by 13058.4mm compared with that of the CSM after finishing 40 empty cells in one tray. The average run times of the GA and the ACA in MATLAB (R2012a) were 0.32 and 0.94s, respectively. These results meet real-time operation requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.