Abstract

Background As a subtype of chemical exchange saturation transfer imaging without contrast agent administration, amide proton transfer (APT) imaging has demonstrated the potential for differentiating the histologic grades of gliomas. Dynamic susceptibility contrast-enhanced perfusion, a perfusion-weighted imaging technique, is a well-established technique in grading gliomas. Purpose To compare the ability of amide proton transfer and dynamic susceptibility contrast-enhanced imaging for predicting the grades of gliomas. Material and Methods A comprehensive literature search was performed independently by two observers to identify articles about the diagnostic performance of amide proton transfer and dynamic susceptibility contrast-enhanced perfusion in predicting the grade of gliomas. Summary estimates of diagnostic accuracy were obtained by using a random-effects model. Results Of 179 studies identified, 23 studies were included the analysis. Eight studies evaluated amide proton transfer and 16 studies evaluated dynamic susceptibility contrast-enhanced perfusion with the parameter rCBV. The pooled sensitivities and specificities of each study’s best performing parameter were 88% (95% confidence interval [CI] 74–95) and 89% (95% CI 78–95) for amide proton transfer, and 95% (95% CI 87–98), 88% (95% CI 81–93) for perfusion-weighted imaging–dynamic susceptibility contrast-enhanced perfusion, respectively. The pooled sensitivities and specificities for grading gliomas using the two most commonly evaluated parameters, were 92% (95% CI 80–97) and 90% (95% CI 75–96) for APTmax, and 97% (95% CI 91–99) and 87% (95% CI 80–92) for rCBVmax, respectively. Conclusion Considering the similar performance of APT and dynamic susceptibility contrast-enhanced (DSC) in predicting glioma grade, the former method appears preferable since it needs no contrast agent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.