Abstract
The ability to fine-tune pre-trained deep learning models to learn how to process a downstream task using a large training set allow to significantly improve performances of named entity recognition. Large language models are recent models based on the Transformers architecture that may be conditioned on a new task with in-context learning, by providing a series of instructions or prompt. These models only require few examples and such approach is defined as few shot learning. Our objective was to compare performances of named entity recognition of adverse drug events between state of the art deep learning models fine-tuned on Pubmed abstracts and a large language model using few-shot learning. Hussain et al's state of the art model (PMID: 34422092) significantly outperformed the ChatGPT-3.5 model (F1-Score: 97.6% vs 86.0%). Few-shot learning is a convenient way to perform named entity recognition when training examples are rare, but performances are still inferior to those of a deep learning model fine-tuned with several training examples. Perspectives are to evaluate few-shot prompting with GPT-4 and perform fine-tuning on GPT-3.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.