Abstract

Understanding the changes in the temporal and spatial concentrations of chemical substances in sediment toxicity tests facilitates interpretation of their toxicity and accumulation in benthic organisms because benthic organisms are affected by chemicals via multiple exposure pathways. However, such investigations using chronic sediment toxicity tests have rarely been performed. To examine the concentration profiles of a hydrophobic organic chemical using chronic spiked-sediment toxicity tests, we performed 28-day sediment toxicity tests of fluoranthene with a freshwater amphipod, Hyalella azteca, using a semi-flow-through system and compared the results with those of 10-day tests. In these experiments, we measured various types of fluoranthene concentrations over the test periods: total dissolved (Cdiss ) and freely dissolved (Cfree ) concentrations in overlying water and porewater as well as sediment concentrations. We also examined which concentration correlated with the amphipod bioconcentration factor (BCF). We found that both overlying water and porewater Cfree did not differ significantly on days 10 and 28. Sediment concentrations remained almost stable for 28 days, whereas Cdiss in overlying water varied temporally. These results suggest that the 28-day test provides almost constant concentrations of fluoranthene, particularly in porewater, even in a semi-flow-through system. In addition, the comparison of BCF of fluoranthene on day 10 in the present study with that obtained from water-only tests reported in the literature suggested that Cfree in pore water was the most representative indicator of bioaccumulation in H. azteca. Our findings support the possible use of a water-exchange system in chronic spiked-sediment toxicity tests of hydrophobic organic chemicals. However, further studies using sediments and chemicals with different properties are warranted to generalize the findings of the present study. Environ Toxicol Chem 2022;41:2679-2687. © 2022 SETAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.