Abstract
Artificial Neural Networks are excellent at identifying patterns or trends in data, which makes them perfect for forecasting or prediction. Thus, neural networks have extensive application in biological systems. The application of neural networks to kidney stone diagnosis is emphasized in this article. Kidney stone issues can be diagnosed with neural networks by applying technological concepts such as MLP, SVM, RBF, and BPA. The purpose of this research is to use three different neural network algorithms—each with its own specific design and set of properties to identify kidney stone disease. The performance of the three neural networks is compared in this research with respect to training data set size, model creation time, and accuracy. Kidney stone sickness will be diagnosed using radial basis function (RBF) networks, two layers feed forward perceptrons trained with the back propagation training algorithm, and learning vector quantization (LVQ). However, determining the best approach for any particular diagnostic had never been an easy task. Like many other illnesses, kidney stones have already been diagnosed using neural network algorithms. The main objective of this work is to recommend the best medical diagnostic instrument, such as kidney stone detection, to reduce diagnosis times and improve accuracy and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Transactions on Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.