Abstract
Despite their importance to the photochemistry of the terrestrial atmosphere, and many experimental studies, previous characterization of the Schumann–Runge (SR) bands of O 2, [Formula: see text] (1750–2050 Å) has been limited by poor experimental resolution. In addition, our understanding of the SR spectrum is incomplete, many rovibrational transitions in the perturbed region of the spectrum [B(v > 15)] remaining unassigned. We review new very-high-resolution measurements of the O 2 photoabsorption cross section in the SR bands. Tunable, narrow-bandwidth background vacuum-ultraviolet (VUV) radiation for the measurements (~ 7 × 105 resolving power) was generated by the two-photon-resonant difference-frequency four-wave mixing in Xe of excimer-pumped dye-laser radiation. With the aid of these cross-section measurements, rovibrational and line-shape analyses have led to new insights into the molecular structure and predissociation dynamics of O 2. The current VUV laser-spectroscopic measurements are shown to compare favourably with results from two other very-high-resolution experimental techniques, namely laser-induced fluorescence spectroscopy and VUV Fourier-transform spectroscopy, the latter performed using a synchrotron source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.