Abstract

Specifically deuterated derivatives of the peptide hormone oxytocin were synthesized by the solid-phase method of peptide synthesis using either the standard chloromethylated resin or the benzhydrylamine resin as the support for the syntheses, and a comparison of the overall efficiency of the syntheses on the two resins was made. (1-Hemi-DL-(..beta..,..beta..-/sup 2/H/sub 2/) cystine) oxytocin was synthesized using the standard chloromethylated resin, and the two diastereomers were separated and purified by partition chromatography and gel filtration in an overall yield of about 30%. (1-Hemi-DL-(..cap alpha..-/sup 2/H/sub 1/) cystine) oxytocin was prepared using the benzhydrylamine resin to prepare the nonapeptide resin precursor, but otherwise using essentially identical conditions as used for the synthesis on the chloromethylated resin. Again the two diastereomers were separated and purified by partition chromatography and gel filtration. The overall yield of purified diastereomers under the best conditions was about 49%. For the synthesis of the latter compounds, S-3,4-dimethylbenzyl protecting groups were used to introduce the cysteine residues. The overall yields of the peptide hormone derivatives prepared on the benzhydrylamine resin were substantially improved if HF reactions were run at lower temperatures (0/sup 0/C rather than 25/sup 0/C), and if the S-3,4-dimethylbenzyl rather than the S-benzyl group was usedmore » for cysteine protection. Reproducible procedures for preparing benzhydrylamine resins with amino substitution levels of 0.15-0.45 mmol of amino group/g of resin were developed.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.