Abstract
A consistent analytical comparison has been made of the transient behavior of critical and subcritical fast-spectrum reactor systems, the basic core design assumed in each case being that of the 80-MW(thermal) mixed-oxide-fueled, Pb-Bi-cooled, Experimental Accelerator Driven System (XADS). The transient calculations were performed using the FAST code system developed at the Paul Scherrer Institute. The present study demonstrates a high level of self-protection of both the critical and subcritical systems over a wide range of postulated events, including transient overpower due to reactivity insertion, loss of flow, station blackout, loss of coolant, and core overcooling accidents. The relative advantages and shortcomings of the two system types, from the viewpoint of transient behavior, are discussed on the basis of the corresponding simulation results obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.