Abstract

Nowadays, there is limited research focusing on the biosorption of Pb2+ through microbial process, particularly at the level of gene expression. To overcome this knowledge gap, we studied the adsorption capacity of Stenotrophomonas rhizophila JC1 to Pb2+, and investigated the physiological mechanism by means of SEM, EDS, FTIR, membrane permeability detection, and investigated the molecular mechanism through comparative transcriptomics. The results showed that after 16h of cultivation, the biosorption capacity of JC1 for 100mg/L of Pb2+ reached at 79.8%. The main mechanism of JC1 adsorb Pb2+ is via intracellular accumulation, accounting for more than 90% of the total adsorption. At the physiological level, Pb2+ can precipitate with anion functional groups (e.g., -OH, -NH) on the bacterial cell wall or undergo replacement reaction with cell component elements (e.g., Si, Ca) to adsorb Pb2+ outside of the cell wall, thus accomplishing extracellular adsorption of Pb2+ by strains. Furthermore, the cell membrane acts as a "switch" that inhibits the entry of metal ions into the cell from the plasma membrane. At the molecular level, the gene pbt specificity is responsible for the adsorption of Pb2+ by JC1. In addition, phosphate permease is a major member of the ABC transporter family involved in Pb2+, and czcA/cusA or Co2+/Mg2+ efflux protein plays an important role in the efflux of Pb2+ in JC1. Further, cellular macromolecule biosynthesis, inorganic cation transmembrane transport, citrate cycle (TCA) and carbon metabolism pathways all play crucial roles in the response of strain JC1 to Pb2+ stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.