Abstract

BackgroundFistular leaves frequently appear in Allium species, and previous developmental studies have proposed that the process of fistular leaf formation involves programmed cell death. However, molecular evidence for the role of programmed cell death in the formation of fistular leaf cavities has yet to be reported.ResultsIn this study, we characterized the leaf transcriptomes of nine Allium species, including six fistular- and three solid-leaved species. In addition, we identified orthologous genes and estimated their Ka and Ks values, in order to ascertain their selective pattern. Phylogenetic analysis based on the transcriptomes revealed that A. tuberosum was the most ancestral among the nine species, and analysis of orthologous genes between A. tuberosum and the other eight species indicated that 149 genes were subject to positive selection; whereas >3000 had undergone purifying selection in each species.ConclusionsWe found that many genes that are potentially related to programmed cell death either exhibited rapid diversification in fistular-leaved species, or were conserved in solid-leaved species in evolutionary history. These genes potentially involved in programmed cell death might play important roles in the formation of fistular leaf cavities in Allium, and the differing selection patterns in fistular- and solid-leaved species may be responsible for the evolution of fistular leaves.

Highlights

  • Fistular leaves frequently appear in Allium species, and previous developmental studies have proposed that the process of fistular leaf formation involves programmed cell death

  • As one of the largest genera of the petaloid monocotyledons, Allium (Amaryllidaceae) comprises more than 920 species [1] and includes several economically important crops that are cultivated for consumption or medicinal uses, such as garlic (A. sativum), welsh onion (A. fistulosum), leek (A. porrum), Chinese chives (A. tuberosum), onion (A. cepa), Chinese jiaotou (A. chinense), and shallot (A. ascalonicum)

  • Developmental investigation of the leaves of A. fistulosum found that the process of fistular leaf formation involved programmed cell death (PCD)

Read more

Summary

Introduction

Fistular leaves frequently appear in Allium species, and previous developmental studies have proposed that the process of fistular leaf formation involves programmed cell death. Molecular evidence for the role of programmed cell death in the formation of fistular leaf cavities has yet to be reported. Varied leaf shapes can be observed among Allium species, including flat, columnar, solid, and fistular morphologies. Morphological and cellular studies have found that fistular leaves develop from solid precursors [2]. Developmental investigation of the leaves of A. fistulosum found that the process of fistular leaf formation involved programmed cell death (PCD). Molecular evidence for the involvement of PCD in the formation of fistular leaf cavities is still absent in Allium, owing to the limited availability of genetic resources for Allium spp

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.