Abstract

BackgroundWind, an important abiotic stress factor, affects forests in coastal areas, causes tree damage and timber loss.MethodsTwo genotypes of Eucalyptus camaldulensis-strong wind-resistant CA5 and weak wind-resistant C037 were used for RNA-seq analysis to screen for candidate wind-resistance genes and transcription factors (TFs) by comparing the transcriptome analysis of the two varieties in response to wind stress.ResultsIt showed that 7061 differentially expressed unigenes could be annotated including 4,110 up-regulated unigenes and 2,951 down-regulated unigenes. Gene Ontology (GO) analysis revealed that six cellulose pathways were involved in response to wind stress. The unigenes in phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways were found to be differentially expressed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Moreover, 37 differentially expressed genes were functionally annotated to be involved in the secondary metabolism of phenylalanine (ko00940). Seventy-eight TFs related to the regulating cellulose and lignin synthesis were expressed differently from the various treatments. The expressions of C3H, POX, MYB, NAC, Gene008307, and Gene011799 were significantly upregulated in CA5. Overall, the main response of Eucalyptus to wind stress was associated with cell wall biosynthesis; key genes of cellulose and lignin biosynthesis pathways and related TFs were involved in the tree response to wind stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.