Abstract

BackgroundThe Manila clam Ruditapesphilippinarum is one of the most economically important marine shellfish. However, the molecular mechanisms of early development in Manila clams are largely unknown. In this study, we collected samples from 13 stages of early development in Manila clam and compared the mRNA expression pattern between samples by RNA-seq techniques.ResultsWe applied RNA-seq technology to 13 embryonic and larval stages of the Manila clam to identify critical genes and pathways involved in their development and biological characteristics. Important genes associated with different morphologies during the early fertilized egg, cell division, cell differentiation, hatching, and metamorphosis stages were identified. We detected the highest number of differentially expressed genes in the comparison of the pediveliger and single pipe juvenile stages, which is a time when biological characteristics greatly change during metamorphosis. Gene Ontology (GO) enrichment analysis showed that expression levels of microtubule protein-related molecules and Rho genes were upregulated and that GO terms such as ribosome, translation, and organelle were enriched in the early development stages of the Manila clam. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the foxo, wnt, and transforming growth factor-beta pathways were significantly enriched during early development. These results provide insights into the molecular mechanisms at work during different periods of early development of Manila clams.ConclusionThese transcriptomic data provide clues to the molecular mechanisms underlying the development of Manila clam larvae. These results will help to improve Manila clam reproduction and development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.