Abstract

Comparative transcriptome analysis of early fruits of long and round eggplants, SmOVATE5, is involved in regulating fruit development. Eggplant, a solanaceous crop that has undergone a long period of domestication, is one of the most important vegetables worldwide. The shape of its fruit is an important agronomic trait and consumers in different regions have different preferences. However, a limited understanding of the molecular mechanisms regulating fruit development and shape has hindered eggplant breeding. In this study, we performed morphological observations and transcriptome analysis of long- and round-fruited eggplant genotypes to understand the molecular regulation during the early development of different fruit shapes. Morphological studies revealed that the two varieties already exhibited distinctly different phenotypes at the initial stage of fruit development before flowering, with rapid fruit enlargement beginning on the sixth day after flowering. Comparative transcriptome analysis identified phytohormone-related genes that were significantly upregulated on the day of flowering, indicating they may be involved in regulating the initial stages of fruit development. Notably, SmARF1 showed a sustained upregulation pattern in both varieties, suggesting that it may promote eggplant fruit growth. In addition, several differentially expressed genes of the SUN, YABBY, and OVATE families are potentially involved in the regulation of fruit development or fruit shape. We demonstrated that the SmOVATE5 gene has a negative regulatory function suppressing plant growth and development. In conclusion, this study provides new insights into the molecular regulatory mechanisms of eggplant fruit development, and the genes identified may provide valuable references for different fruit shape breeding programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call