Abstract

Epithelial-mesenchymal transition (EMT), angiogenesis, cell adhesion and extracellular matrix (ECM) interaction are essential for colorectal cancer (CRC) metastasis. Low grade mucinous neoplasia of the appendix (LAMN) and its advanced state low grade pseudomyxoma peritonei (lgPMP) show local aggressiveness with very limited metastatic potential as opposed to CRC. To better understand the underlying processes that foster or impede metastatic spread, we compared LAMN, lgPMP, and CRC with respect to their molecular profile with subsequent pathway analysis.LAMN, lgPMP and (mucinous) CRC cases were subjected to transcriptomic analysis utilizing Poly(A) RNA sequencing. Successfully sequenced cases (LAMN n = 10, 77%, lgPMP n = 13, 100% and CRC n = 8, 100%) were investigated using bioinformatic and statistical tests (differential expression analysis, hierarchical clustering, principal component analysis and gene set enrichment analysis).We identified a gene signature of 28 genes distinguishing LAMN, lgPMP and CRC neoplasias. Ontology analyses revealed that multiple pathways including EMT, ECM interaction and angiogenesis are differentially regulated. Fifty-three significantly differentially regulated gene sets were identified between lgPMP and CRC followed by CRC vs. LAMN (n = 21) and lgPMP vs. LAMN (n = 16). Unexpectedly, a substantial enrichment of the EMT gene set was observed in lgPMP vs. LAMN (FDR=0.011) and CRC (FDR=0.004). Typical EMT markers were significantly upregulated (Vimentin, TWIST1, N-Cadherin) or downregulated (E-Cadherin) in lgPMP. However, MMP1 and MMP3 levels, associated with EMT, ECM and metastasis, were considerably higher in CRC.We show that the different tumor biological behaviour and metastatic spread pattern of midgut malignancies is reflected in a different gene expression profile. We revealed a strong activation of the EMT program in non-metastasizing lgPMP vs. CRC. Hence, although EMT is considered a key step in hematogenous spread, successful EMT does not necessarily lead to hematogenous dissemination. This emphasizes the need for further pathway analyses and forms the basis for mechanistic and therapy-targeting research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.