Abstract

Zelkova schneideriana is a fast-growing tree species endemic to China. Recent surveys and reports have highlighted a continued decline in its natural populations; therefore, it is included in the Red List of Threatened Species by The International Union for Conservation of Nature. A new variety “HenTianGao” (H) has been developed with smaller plant height, slow growth, and lower branching points. In this study, we attempted to understand the differences in plant height of Z. schneideriana (J) and its dwarf variety H. We determined the endogenous hormone content in the annual grafted branches of both J and H. J exhibited higher gibberellic acid (GA)-19 and trans-Zeatin (tZ) levels, whereas H had higher levels of indole-3-acetic acid (IAA) catabolite 2-oxindole-3-acetic acid (OxIAA), IAA-Glu conjugate, and jasmonic acid (JA) (and its conjugate JA-Ile). The transcriptome comparison showed differential regulation of 20,944 genes enriched in growth and development, signaling, and metabolism-related pathways. The results show that the differential phytohormone level (IAA, JA, tZ, and GA) was consistent with the expression of the genes associated with their biosynthesis. The differences in relative OxIAA, IAA-Glu, GA19, trans-Zeatin, JA, and JA-Ile levels were linked to changes in respective signaling-related genes. We also observed significant differences in the expression of cell size, number, proliferation, cell wall biosynthesis, and remodeling-related genes in J and H. The differences in relative endogenous hormone levels, expression of biosynthesis, and signaling genes provide a theoretical basis for understanding the plant height differences in Z. schneideriana.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.