Abstract

Triclosan (TCS) is a highly effective antibacterial agent, which is widely distributed in wastewater and sludge. The application of sludge containing high concentration TCS in agriculture will cause physiological damage to plants. Nevertheless, little is known about the physiological and molecular mechanism of TCS to plants. So firstly the physiological and biochemical indexes of tobacco with treatment of different concentrations of TCS were evaluated in this study. The results showed that tobacco plants with TCS treatment exhibited lower germination rate, root development, photosynthesis efficiency, and higher ROS accumulation in comparison with control group. The transcriptome analysis of tobacco plants was then performed to reveal the molecular mechanism in the response of tobacco to TCS. There were 3, 819 differentially expressed genes (DEGs) were identified between groups with or without TCS treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these DEGs were mainly enriched in groups of the plant hormone signal transduction pathway. To further investigate the role of plant hormone, transgenic tobacco overexpressing a homologous of salicylic acid (SA) binding protein gene was used to assess the SA-mediate TCS tolerance in plant. The results showed that transgenic plants exhibited enhanced activities of antioxidant enzymes and stronger TCS resistance than wild-type ones, which verify the important role of SA signal pathway in TCS response of tobacco plants. This study could be used to better understand the key roles of plant hormones in the TCS stress response of higher plants, and find key pathways and candidate genes for phytoremediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call