Abstract

Red swamp crayfish is an important model organism for research of the invertebrate innate immunity mechanism. Its excellent disease resistance against bacteria, fungi, and viruses is well-known. However, the antiviral mechanisms of crayfish remain unclear. In this study, we obtained high-quality sequence reads from normal and white spot syndrome virus (WSSV)-challenged crayfish gills. For group normal (GN), 39,390,280 high-quality clean reads were randomly assembled to produce 172,591 contigs; whereas, 34,011,488 high-quality clean reads were randomly assembled to produce 182,176 contigs for group WSSV-challenged (GW). After GO annotations analysis, a total of 35,539 (90.01%), 14,931 (37.82%), 28,221 (71.48%), 25,290 (64.05%), 15,595 (39.50%), and 13,848 (35.07%) unigenes had significant matches with sequences in the Nr, Nt, Swiss-Prot, KEGG, COG and GO databases, respectively. Through the comparative analysis between GN and GW, 12,868 genes were identified as differentially up-regulated DEGs, and 9,194 genes were identified as differentially down-regulated DEGs. Ultimately, these DEGs were mapped into different signaling pathways, including three important signaling pathways related to innate immunity responses. These results could provide new insights into crayfish antiviral immunity mechanism.

Highlights

  • Unlike vertebrates, invertebrates lack an acquired immune system, but they develop the innate immune system, including cellular and humoral immune responses (Du et al, 2010)

  • Gills were collected from ten controls, uninfected crayfish designated as the Group normal (GN)

  • Illumina sequencing of the crayfish gills transcriptome

Read more

Summary

Introduction

Invertebrates lack an acquired immune system, but they develop the innate immune system, including cellular and humoral immune responses (Du et al, 2010). When hosts suffer insults or infections from pathogens, these genes can be synergistically mobilized to play their respective roles in cellular defense, especially in the humoral immune response (Taffoni and Pujol, 2015). The red swamp crayfish is used as a model organism to research the response principles of the invertebrate innate immune system. This species is native to Northeastern Mexico and South America and was introduced into China from Japan in the 1930s (Shen et al, 2014).

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call