Abstract

BackgroundLeaf mold disease caused by Cladosporium fulvum is a serious threat affecting the global production of tomato. Cf genes are associated with leaf mold resistance, including Cf-16, which confers effective resistance to leaf mold in tomato. However, the molecular mechanism of the Cf-16-mediated resistance response is largely unknown.ResultsWe performed a comparative transcriptome analysis of C. fulvum-resistant (cv. Ontario7816) and C. fulvum-susceptible (cv. Moneymaker) tomato cultivars to identify differentially expressed genes (DEGs) at 4 and 8 days post inoculation (dpi) with C. fulvum. In total, 1588 and 939 more DEGs were found in Cf-16 tomato than in Moneymaker at 4 and 8 dpi, respectively. Additionally, 1350 DEGs were shared between the 4- and 8-dpi Cf-16 groups, suggesting the existence of common core DEGs in response to C. fulvum infection. The up-regulated DEGs in Cf-16 tomato were primarily associated with defense processes and phytohormone signaling, including salicylic acid (SA) and jasmonic acid (JA). Moreover, SA and JA levels were significantly increased in Cf-16 tomato at the early stages of C. fulvum infection. Contrary to the previous study, the number of up-regulated genes in Cf-16 compared to Cf-10 and Cf-12 tomatoes was significantly higher at the early stages of C. fulvum infection.ConclusionOur results provide new insight into the Cf-mediated mechanism of resistance to C. fulvum, especially the unique characteristics of Cf-16 tomato in response to this fungus.

Highlights

  • Leaf mold disease caused by Cladosporium fulvum is a serious threat affecting the global production of tomato

  • RNA sequencing and transcript identification To obtain transcriptome profiles of Cf-16 tomato and Moneymaker following C. fulvum infection, we performed RNA-Seq analysis at 4 and 8 dpi, with three biological replicates performed at each time point for each

  • Among the samples collected after infection with C. fulvum at 4 and 8 dpi, 2242 and 3095 Differentially expressed gene (DEG) were identified between Cf-16 tomato and Moneymaker, respectively (Table 1)

Read more

Summary

Introduction

Leaf mold disease caused by Cladosporium fulvum is a serious threat affecting the global production of tomato. Tomato (Solanum lycopersicum L.) is the second most important horticultural crop worldwide [1, 2] and an important model plant for fleshy fruit development and plant-pathogen interactions. Leaf mold disease caused by Cladosporium fulvum is considered to be one of the most devastating diseases in tomato. Plants recognize and respond to pathogens in several phases. Pathogen-associated molecular patterns (PAMPs) are recognized by pattern recognition receptors (PRRs) in plants, inducing PAMP-triggered immunity (PTI) and preventing pathogen colonization [7, 8]. Successful pathogens bypass PTI and secrete effectors into plant cells, and the effector-triggered susceptibility response (ETS) ensues.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.