Abstract

BackgroundTropical water lily is an aquatic plant with high ornamental value, but it cannot overwinter naturally at high latitudes. The temperature drop has become a key factor restricting the development and promotion of the industry.ResultsThe responses of Nymphaea lotus and Nymphaea rubra to cold stress were analyzed from the perspective of physiology and transcriptomics. Under the cold stress, Nymphaea rubra had obvious leaf edge curling and chlorosis. The degree of peroxidation of its membrane was higher than that of Nymphaea lotus, and the content of photosynthetic pigments also decreased more than that of Nymphaea lotus. The soluble sugar content, SOD enzyme activity and CAT enzyme activity of Nymphaea lotus were higher than those of Nymphaea rubra. This indicated that there were significant differences in the cold sensitivity of the two varieties. GO enrichment and KEGG pathway analysis showed that many stress response genes and pathways were affected and enriched to varying degrees under the cold stress, especially plant hormone signal transduction, metabolic pathways and some transcription factor genes were from ZAT gene family or WKRY gene family. The key transcription factor ZAT12 protein in the cold stress response process has a C2H2 conserved domain, and the protein is localized in the nucleus. Under the cold stress, overexpression of the NlZAT12 gene in Arabidopsis thaliana increased the expression of some cold-responsive protein genes. The content of reactive oxygen species and MDA in transgenic Arabidopsis thaliana was lower, and the content of soluble sugar was higher, indicating that overexpression of NlZAT12 can improve the cold tolerance of Arabidopsis thaliana.ConclusionWe demonstrate that ethylene signalling and reactive oxygen species signalling play critical roles in the response of the two cultivars to cold stress. The key gene NlZAT12 for improving cold tolerance was identified. Our study provides a theoretical basis for revealing the molecular mechanism of tropical water lily in response to cold stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.