Abstract

Seed vigor is an important agronomic trait, and wide variation exists among peanut accessions. However, the detailed regulatory mechanisms underlying differences in seed vigor between varieties are not known in peanut yet. Here, we performed a comparative transcriptome analysis of germinating seeds in two contrasting peanut accessions, namely A86 (high-vigor variety) and A279 (low-vigor variety). A total of 583 and 860 differentially expressed genes (DEGs) were identified at two imbibition stages between A86 and A279, respectively. Pathway enrichment tests highlighted the cell wall remodeling-, hormone signaling-, transcriptional regulation-, and oxidative stress-related DEGs, which may explain to a certain extent the difference in seed vigor between the two cultivars. Among them, the largest number of cell wall remodeling-related DEGs were extensions followed by cellulose synthases, fasciclin-like arabinogalactan proteins, polygalacturonases, expansins, and pectinesterases and the hormone signaling-related DEGs belonged mainly to the auxin and ethylene signaling pathway. The majority of transcriptional regulation-related DEGs were MYB, FAR1, and bHLH transcription factors, and the oxidative stress-related DEGs were mainly peroxidases. Further physiological analyses indicated that differences in seed vigor between A86 and A279 may be associated with differences in the ROS-scavenging abilities mediated by peroxidases. Moreover, we identified 16 DEGs homologous to known Arabidopsis regulators of seed dormancy and germination, suggesting that these DEGs would play similar functional roles during peanut seed germination. Our results not only provide important insights into the difference in seed vigor between varieties, but offer candidate genes that are worth investigating in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.