Abstract

AbstractAmino acid transporters are promising targets for engineering acid‐tolerant strains of Lactococcus lactis. However, the simple overexpression of transporters alone is insufficient to achieve a highly acid‐resistant phenotype. This study investigated the effects of amino acid transporters on the acid‐stress tolerance of L. lactis. Here, we first verified the contribution of amino acid transporters to acid tolerance by overexpressing the ctrA, glnP, and glnQ genes in L. lactis. Transcriptome analysis revealed that most genes associated with specific amino acid transport, pyrimidine metabolism, and functional proteins, were upregulated in the overexpression strains. Among them, arginine biosynthesis (argG and argH), amino acid transport (yjeM and azlC), and pyrimidine metabolism were considered to be the most important regulatory mechanisms. Importantly, metabolite profiling revealed that the overexpression strains had higher intracellular levels of amino acids, particularly aspartate, glutamate, and arginine at low pH, as well as higher intracellular ATP levels, which was consistent with the corresponding gene‐expression levels. Finally, the simultaneous overexpression of glnP and glnQ led to a further improvement of acid tolerance in L. lactis. This study reveals the regulatory mechanisms of amino acid transporters, and provides a novel strategy for achieving higher acid tolerance via positive tandem expression approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.