Abstract

Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism.

Highlights

  • Sexual dimorphism, which differentiates males and females in morphological, physiological and behavioral characteristics, is a common phenomenon in the animal kingdom

  • Two cDNA libraries were generated with pooled mRNAs from the whole bodies of female and male juveniles of E. sinensis

  • Compared with the available data from database and the previously reported transcriptomes from male gonads, the present study, providing more than 10 Gb clean data, is the first wholebody RNA sequencing of sex-specific transcriptomes for juvenile Chinese mitten crab E. sinensis

Read more

Summary

Introduction

Sexual dimorphism, which differentiates males and females in morphological, physiological and behavioral characteristics, is a common phenomenon in the animal kingdom. Based on the nearly identical genomes, the phenotypic differences between the sexes are thought to largely result from sex differences in gene expression [1,2]. PLOS ONE | DOI:10.1371/journal.pone.0133068 July 20, 2015

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call