Abstract
BackgroundSaline-alkaline stress is a major abiotic stress that is harmful to plant growth worldwide. Two peach cultivars (GF677 and Maotao) display distinct phenotypes under saline-alkaline stress. The molecular mechanism explaining the differences between the two cultivars is still unclear.ResultsIn the present study, we systematically analysed the changes in GF677 and Maotao leaves upon saline-alkaline stress by using cytological and biochemical technologies as well as comparative transcriptome analysis. Transmission electron microscopy (TEM) observations showed that the structure of granum was dispersive in Maotao chloroplasts. The biochemical analysis revealed that POD activity and the contents of chlorophyll a and chlorophyll b, as well as iron, were notably decreased in Maotao. Comparative transcriptome analysis detected 881 genes with differential expression (including 294 upregulated and 587 downregulated) under the criteria of |log2 Ratio| ≥ 1 and FDR ≤0.01. Gene ontology (GO) analysis showed that all differentially expressed genes (DEGs) were grouped into 30 groups. MapMan annotation of DEGs showed that photosynthesis, antioxidation, ion metabolism, and WRKY TF were activated in GF677, while cell wall degradation, secondary metabolism, starch degradation, MYB TF, and bHLH TF were activated in Maotao. Several iron and stress-related TFs (ppa024966m, ppa010295m, ppa0271826m, ppa002645m, ppa010846m, ppa009439m, ppa008846m, and ppa007708m) were further discussed from a functional perspective based on the phylogenetic tree integration of other species homologues.ConclusionsAccording to the cytological and molecular differences between the two cultivars, we suggest that the integrity of chloroplast structure and the activation of photosynthesis as well as stress-related genes are crucial for saline-alkaline resistance in GF677. The results presented in this report provide a theoretical basis for cloning saline-alkaline tolerance genes and molecular breeding to improve saline-alkaline tolerance in peach.
Highlights
Saline-alkaline stress is a major abiotic stress that is harmful to plant growth worldwide
To validate the expression of Differentially expressed gene (DEG), 11 genes involved in photosynthesis, carbohydrate metabolism, antioxidation, metal transporter, stress, polyamine biosynthesis, and transcription factor were selected for the validation of DEGs, and the results showed that their expression pattern was highly related to the DEG data (Fig. 2b)
In the present study, the biochemical, cytological and transcriptome differences between GF677 and Maotao were systematically analysed under saline-alkaline stress
Summary
Saline-alkaline stress is a major abiotic stress that is harmful to plant growth worldwide. Two peach cultivars (GF677 and Maotao) display distinct phenotypes under saline-alkaline stress. Saline-alkaline stress adversely affects plant growth and development. Upon saline-alkaline stress, a large cluster of gene expression is reprogrammed. Several key genes such as OsLOL5, Gshdz, and SsMT2, have been cloned and showed notable tolerance to saline-alkaline stress in transgenic plants [3,4,5]. Using RNA-Seq technology, the effects of gene expression on saline-alkaline stress have been widely studied in alfalfa (Medicago sativa L.), flax (Linum usitatissinum L.), jujube (Ziziphus jujuba Mill.), black locust (Robinia pseudoacacia L.), and Chinese plum (Prunus salicina Lindl.), and thousands of differentially expressed genes have been detected [8,9,10,11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.