Abstract

BackgroundIn China, lotus is an important cultivated crop with multiple applications in ornaments, food, and environmental purification. Adventitious roots (ARs), a secondary root is necessary for the uptake of nutrition and water as the lotus principle root is underdeveloped. Therefore, AR formation in seedlings is very important for lotus breeding due to its effect on plant early growth. As lotus ARs formation was significantly affected by sucrose treatment, we analyzed the expression of genes and miRNAs upon treatment with differential concentrations of sucrose, and a crosstalk between sucrose and IAA was also identified.ResultsNotably, 20 mg/L sucrose promoted the ARs development, whereas 60 mg/L sucrose inhibited the formation of ARs. To investigate the regulatory pathway during ARs formation, the expression of genes and miRNAs was evaluated by high-throughput tag-sequencing. We observed that the expression of 5438, 5184, and 5345 genes was enhanced in the GL20/CK0, GL60/CK0, and CK1/CK0 libraries, respectively. Further, the expression of 73, 78, and 71 miRNAs was upregulated in the ZT20/MCK0, ZT60/MCK0, and MCK1/MCK0 libraries, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the differentially expressed genes and miRNAs in the GL20/GL60 and ZT20/ZT60 libraries were involved in signal transduction. A large number of these genes (29) and miRNAs (53) were associated with plant hormone metabolism. We observed an association between five miRNAs (miR160, miR156a-5p, miR397-5p_1, miR396a and miR167d) and nine genes (auxin response factor, protein brassinosteroid insensitive 1, laccase, and peroxidase 27) in the ZT20/ ZT60 libraries during ARs formation. Quantitative polymerase chain reaction (qRT-PCR) was used to validate the high-throughput tag-sequencing data.ConclusionsWe found that the expression of many critical genes involved in IAA synthesis and IAA transport was changed after treatment with various concentration of sucrose. Based on the change of these genes expression, IAA and sucrose content, we concluded that sucrose and IAA cooperatively regulated ARs formation. Sucrose affected ARs formation by improving IAA content at induction stage, and increased sucrose content might be also required for ARs development according to the changes tendency after application of exogenous IAA.

Highlights

  • In China, lotus is an important cultivated crop with multiple applications in ornaments, food, and environmental purification

  • We found that the expression of many critical genes involved in indole acetic acid (IAA) synthesis and IAA transport was changed after treatment with various concentration of sucrose

  • The effect of sucrose on lotus Adventitious roots (ARs) formation To evaluate the role of sucrose on AR formation, we treated the lotus seedlings with 20 mg/L or 60 mg/L sucrose for 2 days

Read more

Summary

Introduction

In China, lotus is an important cultivated crop with multiple applications in ornaments, food, and environmental purification. In China, lotus is commonly cultivated as an important off-season vegetable (long storage of product organ in soil) as the moderately humid climate provides the suitable growth conditions, especially in Yangtze River and Yellow River basin [1, 2]. In the last few decades, a variety of lotus products have been developed including lotus starch, lotus drink, and lotus tea. As the principal root of lotus is underdeveloped, the major route for uptake of water and nutrition is through the adventitious roots (ARs) during the plant growth and development. Various internal (gene regulation or expression) and external factors (temperature, light, mechanical damage, hormone) are involved in the morphological and anatomical structure formation, physiological and biochemical or molecular regulation of the organ (including root) development [9, 11,12,13]. The formation of AR is a heritable quantitative trait

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.