Abstract

BackgroundPhenotypic plasticity is a crucial adaptive mechanism that enables organisms to modify their traits in response to changes in their environment. Predator-induced defenses are an example of phenotypic plasticity observed across a wide range of organisms, from single-celled organisms to vertebrates. In addition to morphology and behavior, these responses also affect life-history traits. The crustacean Daphnia galeata is a suitable model organism for studying predator-induced defenses, as it exhibits life-history traits changes under predation risk. To get a better overview of their phenotypic plasticity under predation stress, we conducted RNA sequencing on the transcriptomes of two Korean Daphnia galeata genotypes, KE1, and KB11, collected in the same environment.ResultsWhen exposed to fish kairomones, the two genotypes exhibited phenotypic variations related to reproduction and growth, with opposite patterns in growth-related phenotypic variation. From both genotypes, a total of 135,611 unigenes were analyzed, of which 194 differentially expressed transcripts (DETs) were shared among the two genotypes under predation stress, which showed consistent, or inconsistent expression patterns in both genotypes. Prominent DETs were related to digestion and reproduction and consistently up-regulated in both genotypes, thus associated with changes in life-history traits. Among the inconsistent DETs, transcripts encode vinculin (VINC) and protein obstructor-E (OBST-E), which are associated with growth; these may explain the differences in life-history traits between the two genotypes. In addition, genotype-specific DETs could explain the variation in growth-related life-history traits between genotypes, and could be associated with the increased body length of genotype KE1.ConclusionsThe current study allows for a better understanding of the adaptation mechanisms related to reproduction and growth of two Korean D. galeata genotypes induced by predation stress. However, further research is necessary to better understand the specific mechanisms by which the uncovered DETs are related with the observed phenotypic variation in each genotype. In the future, we aim to unravel the precise adaptive mechanisms underlying predator-induced responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call