Abstract

BackgroundLycium barbarum and L. ruthenicum have been used as traditional medicinal plants in China and other Asian counties for centuries. However, the molecular mechanisms underlying fruit development and ripening, as well as the associated production of medicinal and nutritional components, have been little explored in these two species.ResultsA competitive transcriptome analysis was performed to identify the regulators and pathways involved in the fruit ripening of red wolfberry (L. barbarum) and black wolfberry (L. ruthenicum) using an Illumina sequencing platform. In total, 155,606 genes and 194,385 genes were detected in red wolfberry (RF) and black wolfberry (BF), respectively. Of them, 20,335, 24,469, and 21,056 genes were differentially expressed at three different developmental stages in BF and RF. Functional categorization of the differentially expressed genes revealed that phenylpropanoid biosynthesis, flavonoid biosynthesis, anthocyanin biosynthesis, and sugar metabolism were the most differentially regulated processes during fruit development and ripening in the RF and BF. Furthermore, we also identified 38 MYB transcription factor-encoding genes that were differentially expressed during black wolfberry fruit development. Overexpression of LrMYB1 resulted in the activation of structural genes for flavonoid biosynthesis and led to an increase in flavonoid content, suggesting that the candidate genes identified in this RNA-seq analysis are credible and might offer important utility.ConclusionThis study provides novel insights into the molecular mechanism of Lycium fruit development and ripening and will be of value to novel gene discovery and functional genomic studies.

Highlights

  • Lycium barbarum and L. ruthenicum have been used as traditional medicinal plants in China and other Asian counties for centuries

  • Sequencing and transcript assembly of identified genes expressed during fruit ripening A total of 18 cDNA libraries prepared from fruit flesh samples at the three critical ripening stages were constructed

  • Since the full-length genome of Lycium has not been sequenced, a comparative transcriptome analysis of two contrasting wolfberry genotypes during fruit development and ripening was peformed to provide additional information regarding the genetic basis of variation in fruit development

Read more

Summary

Introduction

Lycium barbarum and L. ruthenicum have been used as traditional medicinal plants in China and other Asian counties for centuries. The molecular mechanisms underlying fruit development and ripening, as well as the associated production of medicinal and nutritional components, have been little explored in these two species. Lycium barbarum and L. ruthenicum belongs to the Lycium genus of the Solanaceae family; these species are widely distributed in the arid and semiarid areas of northwestern China and have been extensively used as traditional medicine plants in China for thousands of years [1]. The fruit of L. barbarum and L. ruthenicum are very important agricultural and biological products, with advantages of having both medicinal and nutritional functions. Gene sequences are usually obtained from comparisons between other species of Solanaceae [10]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.