Abstract

Vibrio parahaemolyticus is one of the main pathogenic bacteria of Portunus trituberculatus and causes mass mortality of P. trituberculatus in aquaculture. In addition, low-salinity stimulation makes P. trituberculatus more susceptible to V. parahaemolyticus infections. In order to elucidate the molecular mechanism of resistance to V. parahaemolyticus in P. trituberculatus, comparative transcriptomic analysis of blood cells stimulated by low salinity and V. parahaemolyticus was carried out in this study. Transcriptome sequencing of low-salinity stress and pathogen infection at different time points was completed using Illumina sequencing technology. A total of 5827, 6432, 5362 and 1784 differentially expressed genes (DEGs) involved in pathways related to ion transport and immunoregulation were found under low-salinity stress at 12, 24, 48 and 72 h compared with the control at 0 h. In contrast, 4854, 4814, 5535 and 6051 DEGs, which were significantly enriched in Toll and IMD signaling pathways, were found at 12, 24, 48 and 72 h compared with the control at 0 h under V. parahaemolyticus infection. Among them, 952 DEGs were shared in the two treatment groups, which were mainly involved in apoptosis and Hippo signaling pathway. Cluster analysis screened 103 genes that were differentially expressed in two factors that were negatively correlated, including immunoglobulin, leukocyte receptor cluster family, scavenger receptor, macroglobulin and other innate-immune-related genes. These results provide data support for the analysis of the mechanisms of immunity to V. parahaemolyticus under low-salinity stress in P. trituberculatus and help to elucidate the molecular mechanisms by which environmental factors affect immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call