Abstract

BackgroundTo gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit).ResultsWe found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins.ConclusionsThe biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg.

Highlights

  • To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit)

  • Classes of color compounds in mulberry fruit To examine the biochemical factors underlying the lack of color development in white mulberry fruit, we compared the anthocyanin content of the two mulberry varieties Da 10 and Baisang at different stages of fruit development

  • We found that three genes involved in tyrosine, phenylalanine, and tryptophan biosynthesis, chorismate mutase (CM), arogenate dehydratase (PDT), and aspartate-prephenate aminotransferase (PAT), were upregulated in Da 10 but not in Baisang (Table S2)

Read more

Summary

Introduction

To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). Anthocyanins are a chemically diverse class of secondary metabolites belonging to the flavonoid group of plant compound. This versatile group of phenolic molecules, of which more than 635 have been identified to date, are responsible for the different colors (the blues, purples, and reds) of many fruits, seeds, and flowers [1]. Different blue shades in flowers are attributable to Dp, whereas reddish hues are due to Cy [3] In addition to their roles as colorants, certain anthocyanins exert antiviral, antibacterial, and fungicidal activities [4, 5], and may play roles in protecting plants from infection by pathogenic microorganisms

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.