Abstract

The Chinese citrus fruit fly, Bactrocera minax (Enderlein), a devastating pest in citrus, has an obligatory diapause at the pupal stage. Although the physiology of obligatory diapause has been well described, the molecular mechanisms underlying the process remain unknow. Here we investigated the molecular mechanisms of obligatory diapause induction in B. minax using high-throughput RNA-Seq data from second-instar larva (2L), third-instar larva (3L) and pupa (P) stages. A total of 116,402 unigenes were obtained, of which 54,781 unigenes were successfully annotated in public databases, and the differentially expressed genes in the 3L vs 2L, P vs 2L, and P vs 3L comparisons were identified. The cluster co-expression patterns of the differentially expressed genes revealed that significantly differentially-expressed genes in the pupal stage were predicted to be related to diapause induction. All differentially expressed genes were investigated by GO functional and KEGG pathway analysis, and the results showed that genes involved in processes such as 20-hydroxyecdysone (20E) biosynthesis, cell cycle and metabolic pathways are likely related to obligatory diapause induction in B. minax. These results provide important information on the transcriptome of the Chinese citrus fruit fly that can be used for further functional studies as well as contributing to our understanding of the molecular basis of obligatory diapause induction and suggesting potential molecular targets for the control of this pest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.