Abstract

BackgroundBotryococcus braunii is known for its high hydrocarbon content, thus making it a strong candidate feedstock for biofuel production. Previous study has revealed that a high cobalt concentration can promote hydrocarbon synthesis and it has little effect on growth of B. braunii cells. However, mechanisms beyond the cobalt enrichment remain unknown. This study seeks to explore the physiological and transcriptional response and the metabolic pathways involved in cobalt-induced hydrocarbon synthesis in algae cells.ResultsGrowth curves were similar at either normal or high cobalt concentration (4.5 mg/L), suggesting the absence of obvious deleterious effects on growth introduced by cobalt. Photosynthesis indicators (decline in Fv/Fm ratio and chlorophyll content) and reactive oxygen species parameters revealed an increase in physiological stress in the high cobalt concentration. Moreover, cobalt enrichment treatment resulted in higher crude hydrocarbon content (51.3% on day 8) compared with the control (43.4% on day 8) throughout the experiment (with 18.2% improvement finally). Through the de novo assembly and functional annotation of the B. braunii race A SAG 807-1 transcriptome, we retrieved 196,276 non-redundant unigenes with an average length of 1086 bp. Of the assembled unigenes, 89,654 (45.7%), 42,209 (21.5%), and 32,318 (16.5%) were found to be associated with at least one KOG, GO, or KEGG ortholog function. In the early treatment (day 2), the most strongly upregulated genes were those involved in the fatty acid biosynthesis and metabolism and oxidative phosphorylation, whereas the most downregulated genes were those involved in carbohydrate metabolism and photosynthesis. Genes that produce terpenoid liquid hydrocarbons were also well identified and annotated, and 21 (or 29.2%) were differentially expressed along the cobalt treatment.ConclusionsBotryococcus braunii SAG 807-1 can tolerate high cobalt concentration and benefit from hydrocarbon accumulation. The time-course expression profiles for fatty acid biosynthesis, metabolism, and TAG assembly were obtained through different approaches but had equally satisfactory results with the redirection of free long-chain fatty acid and VLCFA away from TAG assembly and oxidation. These molecules served as precursors and backbone supply for the fatty acid-derived hydrocarbon accumulation. These findings provide a foundation for exploiting the regulation mechanisms in B. braunii race A for improved photosynthetic production of hydrocarbons.

Highlights

  • Botryococcus braunii is known for its high hydrocarbon content, making it a strong candidate feedstock for biofuel production

  • Cheng et al Biotechnol Biofuels (2018) 11:333 supply for the fatty acid-derived hydrocarbon accumulation. These findings provide a foundation for exploiting the regulation mechanisms in B. braunii race A for improved photosynthetic production of hydrocarbons

  • Activities of antioxidant enzymes and antioxidant response In the present study, we investigated physiological parameters to confirm the toxicological effects of the high cobalt stressor, including the activities of antioxidant enzymes like peroxidase (POD), glutathione reductase (GR), superoxide dismutase (SOD), and malonaldehyde (MDA) (Fig. 3)

Read more

Summary

Introduction

Botryococcus braunii is known for its high hydrocarbon content, making it a strong candidate feedstock for biofuel production. Previous study has revealed that a high cobalt concentration can promote hydrocarbon synthesis and it has little effect on growth of B. braunii cells. Botryococcus braunii is known for its high hydrocarbon production. Different from other algae, the hydrocarbons synthesized by B. braunii are more suitable in high-quality fuel applications, because they are rich in saturated fatty acids, monounsaturated fatty acids, and long-chain aliphatic hydrocarbons [3, 4]. B. braunii’s slow growth and long generation time, as well as our lack of a clear understanding of hydrocarbon anabolic pathways, restrict large-scale cultivation and application of B. braunii as a high-yield hydrocarbon feedstock [3]. Strengthening the research on the regulation of growth and production of hydrocarbons is important for the development and application of hydrocarbon-producing fuels

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.