Abstract

Onion (Allium cepa L.) is an important vegetable crop widely grown for diverse culinary and nutraceutical properties. Being a shallow-rooted plant, it is prone to drought. In the present study, transcriptome sequencing of drought-tolerant (1656) and drought-sensitive (1627) onion genotypes was performed to elucidate the molecular basis of differential response to drought stress. A total of 123206 and 139252 transcripts (average transcript length: 690 bases) were generated after assembly for 1656 and 1627, respectively. Differential gene expression analyses revealed upregulation and downregulation of 1189 and 1180 genes, respectively, in 1656, whereas in 1627, upregulation and downregulation of 872 and 1292 genes, respectively, was observed. Genes encoding transcription factors, cytochrome P450, membrane transporters, and flavonoids, and those related to carbohydrate metabolism were found to exhibit a differential expression behavior in the tolerant and susceptible genotypes. The information generated can facilitate a better understanding of molecular mechanisms underlying drought response in onion.

Highlights

  • Bulb onion (Allium cepa L.) is an economically important vegetable crop cultivated worldwide in a diverse range of climatic conditions varying from temperate to semi-arid

  • Physiological and biochemical parameters such as chlorophyll content, MSI, relative water content (RWC), and antioxidant, phenol, and proline content were found to be higher in the tolerant genotype (1656) than in the susceptible genotype under drought stress (Fig 1; S1 File)

  • RWC and MSI were directly proportional to drought tolerance and differed significantly among the studied genotypes as the stress increased

Read more

Summary

Introduction

Bulb onion (Allium cepa L.) is an economically important vegetable crop cultivated worldwide in a diverse range of climatic conditions varying from temperate to semi-arid. India is one of the largest producers and exporters of onion globally. During 2017–2018, India produced 232 lakh tonnes of onion, of which 15.8 lakh tonnes was exported (http://agricoop.gov.in/). Asia contributes 67.5% of total world production, followed by Africa (12.9%), America (10.1%), and Europe (9.3%) (http://www.fao.org/faostat/en/#data/QC/visualize). Drought stress causes approximately 30% yield losses in onion [1]. Stress due to biotic and abiotic factors is among the major constraints in exploiting the yield potential of the onion crop. In addition to biotic stress, onions are highly vulnerable to abiotic stresses such as extreme

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.