Abstract

Mycobacterium tuberculosis contains mannosylated cell wall components which are important in macrophage recognition and response. The building block for the mannosyl constituents of these components is GDP-mannose, which is synthesized through a series of enzymes involved in the mannose donor biosynthesis pathway. Nothing is known about the expression levels of the genes encoding these enzymes during the course of infection. To generate transcriptional profiles for the mannose donor biosynthesis genes from virulent M. tuberculosis and attenuated Mycobacterium bovis BCG, bacteria were grown in broth culture and within human macrophages. Our results with broth-grown bacteria show that there are differences in expression of the selected genes between M. tuberculosis and BCG, with increased expression of manC in M. tuberculosis and manA in BCG during stationary-phase growth. Results for M. tuberculosis extracted from within macrophages show that whiB2 is highly expressed and manB and manC are moderately expressed during infection. Rv3256c, Rv3258c, and ppm1 have high expression levels early and decreased expression as the infection progresses. Results with BCG show that, as in M. tuberculosis, whiB2 is highly expressed throughout infection, whereas there is either low expression or little change in expression of the remaining genes studied. Overall, our results show that there is differential regulation of expression of several genes in the mannose donor biosynthesis pathway of M. tuberculosis and BCG grown in broth and within macrophages, raising the possibility that the level of mannose donors may vary during the course of infection and thereby impact the biosynthesis of mannose-containing cell wall molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call